
Engineering Analysis of the 
Deformation of Fencing Swords 

Master Llwyd Aldrydd, OP, OWS 
(Lloyd B. Eldred, Ph.D.) 

BaronLlwyd@gmail.com 
 

The topic of deformation (compression and bending) of SCA fencing weapons comes up from time to 
time. In October, 2011, there was a discussion on this topic on the SCA’s society level mailing list for 
Kingdom Rapier Marshals.  I made a long post describing the engineering equations for each of the types 
of deflections we were talking about. Since I expect that the topic will continue to come up, I’ve copied, 
expanded, and updated that post for possible future use. 

First, a small introduction: In the SCA, I’m a former Kingdom Rapier Marshal for Atlantia who has also 
lived and marshaled in the Midrealm and West. Modernly, I have a Ph.D. in Aerospace Engineering and 
do structural design, analysis, and sizing for aircraft and rockets for NASA. 

Three types of deflection are discussed in this article. The first is axial compression, where the blade gets 
shorter due to a compressive force. The second is cantilever bending, where the applied force is 
perpendicular to the blade causing it to deflect off axis. The third type is axial buckling, where an applied 
axial force eventually causes the blade to suddenly pop from being straight to being curved.  

Following the theory sections, I have some discussion on my thoughts and recommendations on the 
issue. 

Axial Compression 
 
A long steel rod acts as an extremely stiff spring. If you pull on it, it will get longer. If you push on it, it 
will get shorter.  You may never have noticed this. As I’ll show you, there’s a good reason why. 
 

 
 
Symbols: 
E - Modulus of Elasticity (Young's modulus). Units are lb/in2 (psi)(or pascals in SI) 
 (epsilon) - Strain, change in length divided by original length. Unit less (inches per inch) 
 (sigma) - Stress, intensity of loading.  Units are lb/in2 (psi) (or pascals in SI) 
F - Applied load, pounds 
A - Cross sectional area, in2 



 (delta) - change in length, inches 
 
Equations: 
 = E   (Hooke's Law) 
replace  
     = F/A 
     = / L 
 
and rearrange to get an equation for the axial deflection of the blade tip under axial load: 

 

ࢾ = 	 ࡸ	ࡲ
࡭	ࡱ

     (Equation 1) 

 
Plug in your blade length and cross section (L and A), the force you're applying (F), and the modulus for 
steel (E, about 30x106 psi) and you'll see that the typical compression () due to loading (F) is 
immeasurably small outside of a lab. 
 
For our purposes, there is effectively no pure axial compression of these blades. What we're really after 
is bending. 
 
Cantilever Bending 
 
The current SCA blade stiffness test is checking cantilever bending. We're holding the grip horizontally 
and applying a weight to push the blade down vertically. This test does not exactly match how the sword 
is used and deflects in combat, but as I will show is a reasonable proxy test for what we’re doing. 
 

 
 
The equation for the lateral deflection of the tip in this case is: 

 
 

ࢾ = 	 ࡸ	ࡲ
૜

૜	ࡱ	ࡵ
       (Equation 2) 

 



F, L, and E were defined above.  
 
"I" is the moment of inertia. It is a function of the cross sectional shape. As you can see from the 
equation, a higher value is more resistant to bending than a lower value. Units are in4 
 
Computing I for an arbitrary shape takes calculus or a computer:  
 

ܫ = 	 නℎଶ	݀ܣ
	

஺

 

 
“h” is the distance from the bending axis of the cross section. The more material that is at a large 
distance from the bending axis of the cross section, the higher the moment of inertia, I, is. An “I-Beam” 
has a high moment of inertia because most of its material is out in the flanges (where the value of “h” is 
high”). They are used when high bending stiffness is desired.  

 
I-Beam Cross Section 

 
Consider a typical SCA blade. When you bend the blade by pushing on the flat side it takes much less 
force than bending the blade by pushing sideways on the edge. This is because the moment of inertia 
measures the bending resistance of the blade shape. A short, wide oval or diamond has a much lower 
value for I than does the tall, narrow oval/diamond that is the same blade at 90 degrees. 
 
Before your eyes roll up in your head any further, we have charts giving the value for I for a large 
selection of common shapes. 
 
The one that seems closest for our purposes is the ellipse: 

 

I =  a b3 / 4 
 

where  
    = 3.14159.... 
   a and b are the two radii of the ellipse (half the diameters). In our case I'd use "a" as half the blade 
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width and "b" as half the blade thickness. If you swap the values of “a” and “b” you’ll get the moment of 
inertia for the blade rotated 90 degrees. 
 

 
Oval Blade Cross Section 

 
You could also back out the value for I by performing a bending test with a known load. And, if you play 
with the numbers in equation 2 you can see, unlike the axial compression case, a measurable deflection 
happens for a small load. This is as we expect and observe. 
 
The current SCA blade bending test uses a known weight (F) and verifies that it produces a minimum 
required deflection () . It is, therefore, measuring the remaining terms in equation 2, i.e. L3 / 3 E I.  Note 
also the strong, cubed, effect of blade length, L, on the deflection. The same cross section shape will 
bend much more on a 45” blade than on a 35” one.  
 
Axial Buckling 
 
Buckling is a more complex phenomenon. In our case, picture putting the tip on the ground and pushing 
straight down on the pommel. At some reasonably small load, the blade will suddenly pop out of line 
and the pommel will move down. To me, buckling is more representative of our actual SCA use of the 
blade and how hard it is possible to strike someone with that blade.  
 
There are very similar equations for this type of deformation which is also called column buckling. But, 
the equations are very strongly dependent on the “boundary conditions”. Boundary conditions are how 
the ends of the blade/column are being held/not held. If both ends are free to rotate (engineers say 
pinned) you get a very different value than if one or both ends are not free to rotate (engineer: fixed). In 
English, you'll get a much higher buckling load if you grip the handle rather than palming the pommel. If 
we end up designing a test based on buckling we'll have to understand that and be very clear in our 
instructions. 
 
Pinned-Pinned Buckling (both ends can rotate - palm on pommel) 
 

ࡼ = 	࣊
૛ࡱ	ࡵ
૛ࡸ

       (Equation 3) 

 
 
Where , E, I, and L were defined before and P is the critical buckling load.  



 
Example of “Pinned-Pinned”: Palm on Pommel, Grip can rotate, use Eqn. 3 

 
Pinned-Fixed (tip can rotate, grip held to not rotate) 
 

ࡼ = 	 ૛.૙૝	࣊૛ࡱ	ࡵ
૛ࡸ

     (Equation 4) 

 
The buckling load is twice as high here and the length of the column is lower (you can't count the 
portion that is being held), so what you'd measure on the scale would be more than twice as high for 
the same blade. 
 

 
Example of “Pinned-Fixed”: Hand on Grip, Grip cannot rotate, use Eqn. 4 
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If would be fairly easy to pick a desired maximum buckling load that could be field tested using a 
portable scale (using the palm on pommel option reduces the scale maximum weight requirement so 
may be preferable as it would allow cheaper/smaller scales). It would take some data gathering to 
determine what that maximum pass/fail value should be. A very quick check of my day-to-day blade 
suggests that the fail line would be in the general ballpark of 20 pounds. Amazon sells a variety of 
portable bathroom scales for about $20. They all seem to require batteries. 
 
Discussion 
 
Equation wise, the main difference between the status-quo bending weight test and the buckling test is 
the "L" term. In equation 2, L is cubed. In equations 3 and 4 it is squared. What that means is that a long 
blade will appear to be more stiff if we switch standards to the buckling test. The two approaches both 
measure “E I” in the same way and will produce the same ranking of blades when tested. 
 
Practicality wise, how often do we check blade stiffness? How much more difficult is requiring a portable 
scale (with working batteries) over a fishing weight? Does switching gain us anything? Are there bad 
blades that pass the current test that the new test could eliminate? 
 
My bottom line feeling is that while a buckling test would more accurately model the real world use of 
our blades, the bending test that we’re currently using is a more than adequate proxy test. It measures 
the same things but in a different way. It is cheaper and more practical to perform in the field.  Unless 
some evidence appears that indicates the buckling test is capable of discriminating a blade we don’t 
want on the field better than the bending test the extra effort does not seem worthwhile to me. 


